First/Second Semester B.E. Degree Examination, January 2013 **Basic Electrical Engineering**

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer FIVE full questions choosing at least two from each part.

- 2. Answer all objective type questions only in OMR sheet page 5 of the Answer Booklet.
- 3. Answers to objective type questions on sheets other than OMR will not be valued.

PART - A

1 a. Choose the correct answer:

(04 Marks)

- i) For a given circuit of $10k\Omega$, a potential difference of 100V is applied. If the voltage is trebled and circuit resistance is increased by four times, the value of current is
 - A) 10A
- B) 7.5 mA
- C) O A
- D) 7.5A

- ii) The unit of magneto motive force (MMF) is
 - A) Ampere
- B) No. of turns
- C) Volf ampere
- D) Ampere turns
- iii) The unit of statically induced emf is volts, then the unit of dynamically induced emf is
 - A) Watts
- B) Webers
- C) Volts
- D) Volt ampere
- iv) Two resistances 4.4Ω , 10.5Ω are connected in parallel, the circuit is energized by 100V supply. The current flowing through 10.5Ω resistor is
 - A) 20A
- B) 9.25A
- C) 2.5A
- D) 8.92mA

- b. In a Series Parallel circuit shown in fig. Q1(b), find
 - i) The voltage drop across 4Ω
- ii) Supply voltage.

(08 Marks)

- c. Define the coefficient of coupling. Derive the equation for the same. Explain its effect on magnetic circuit. (08 Marks)
- 2 a. Choose the correct answer:

(04 Marks)

- i) Which of the following devices work at unity power factor
- A) Induction motor B) Electric Iron
- C) Fluorescent lamp D) Condenser bank
- ii) The equation of an alternating current is given by i = 42.42 Sin 314t. The form factor is
 - A) 1.414
- B) 3.1414
- C) 1.111
- D) 4.44
- iii) Two impedances $Z_1 = (150 + j 157)\Omega$, $Z_2 = (100 j 110)\Omega$ are connected in parallel across 220V, 50Hz supply. The power factor of circuit is
 - A) 0.978 lead
- B) 0.707 lag
- C) 0.707 lead
- D) 0.637 lead
- iv) Power factor of AC circuit can be improved by connecting
 - A) Choke

B) Synchronous motor

C) Induction motor

- D) Fluorescent lamp
- b. Obtain the expression for instantaneous voltage, current, power, power factor in case of series R-L-C circuit by considering all three cases $X_L > X_C$, $X_L < X_C$, $X_L = X_C$. Draw neat phasor diagrams in all 3 cases. (10 Marks)
- c. When a voltage represented by $e = 100 \sin (314t + 20^0)$ volts is applied to a series R-L circuit, the power absorbed is 800 watts and power factor is 0.7. Find R & L and write down the expression for current. (06 Marks)